eISSN 2586-0860 https://doi.org/10.56786/PHWR.2023.16.27.1 # 인천공항과 인천항을 통해 해외에서 유입된 코로나19 변이 바이러스 감시 현황 이은정 1 , 홍사현 1 , 정상운 1 , 박상미 1 , 김영지 1 , 한지혜 1 , 강가람 1 , 장한슬 1 , 장규식 1 , 김일환 2 , 노진선 2 , 이혁진 2 , 김정아 2 , 이채영 2 , 김은진 2 , 남정구 1* ¹질병관리청 수도권질병대응센터 진단분석과. ²질병관리청 감염병진단분석국 신종병원체분석과 #### 초 록 질병관리청 수도권질병대응센터 진단분석과에서는 2021년 2월 15일부터 2023년 3월까지 국립인천공항검역소, 국립인천검역소, 인 천공항 내 민간검사센터에 의뢰된 코로나바이러스감염증-19(코로나19) 진단 검사 중 130개국에서 입국한 13,098명의 확진자를 대상 으로 코로나19 변이 바이러스 분석을 수행하였다. 유전자 감시사업을 통해 분석된 해외 유입 코로나19 변이 바이러스는 오미크론 계열 12,364건(94.4%), 델타 658건(5.0%), 알파 55건(0.4%), 베타 5건, 입실론 4건, 감마 3건, 카파 3건, 이오타 3건, 에타 2건, 쎄타 1건으 로 나타났다. 해외 유입 확진자의 최다 출발국은 2021년 인도네시아(222명, 28.0%), 2022년 미국(1,942명, 17.1%), 2023년 1월부터 3월까지 중국(345명, 37.3%)으로 확인되었고, 코로나19 주요 변이 바이러스들은 다양한 나라를 통해 유입된 것으로 나타났다. 2023년 이후 오미크론의 세부 계통 변이 바이러스 사이에서 생성되는 재조합 변이의 유입이 증가함에 따라, 정확한 분류를 위한 전장유전체분석 의 필요성이 증가되고 있다. 수도권질병대응센터에서는 해외 유입 감염병의 국내 유입을 효과적으로 차단하고 국내 효율적인 방역 조치 를 위해, 24시간 병원체 진단검사체계를 기반으로 코로나19 변이 바이러스 분석을 계속 수행할 예정이다. 주요 검색어: 코로나바이러스감염증-19; 사스코로나바이러스-2; 변이; 유전자 감시; 인천공항 #### 서 로 2019년 12월 중국 후베이성 우한시에서 발생한 코로나 바이러스감염증-19(코로나19)는 2022년 3월 세계보건기구 (World Health Organization, WHO)에서 팬데믹으로 공식 선언한 이래 지속적으로 다양한 변이 바이러스가 발생하면 서 세계 공중 보건에 위협이 되고 있다. 코로나19 원인병원체 인 SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2)는 RNA 바이러스로 증식 및 전파 과정을 반복하 며 지속적으로 새로운 변이가 발생한다, 특히, 스파이크 단백 질(Spike protein, S 단백질) 내 세포결합부위(Receptor binding domain) 변이는 세포 표면의 Angiotensin-converting enzyme-2 수용체와 결합시 세포-바이러스 간 결합력 증가 및 중화항체 결합 제어에 영향을 주어, 전파력 및 중증도를 높이 Received May 10, 2023 Revised May 30, 2023 Accepted May 31, 2023 *Corresponding author: 남정구, Tel: +82-32-740-2715, E-mail: jeonggu64@korea.kr Copyright © Korea Disease Control and Prevention Agency This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http:// creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. #### 핵심요약 #### ① 이전에 알려진 내용은? 2020년 국내 처음 코로나19가 발생된 후, 코로나19 주요 변이들인 알파, 베타, 감마, 델타 및 오미크론이 국내 유전자 감시 사업을 통해 모니터링 되었다. #### ② 새로이 알게 된 내용은? 2023년 이후 오미크론 세부 계통 변이 내에서 생성된 XBB 계열 재조합 바이러스의 해외 유입이 두드러지고 있으며, 이러한 재조합 변이의 정확한 분류를 통한 감시를 위해 전장유 전체분석이 요구되고 있다. #### ③ 시사점은? 코로나19 바이러스의 신규 변이 감시 및 국내 전파 차단을 위해서는, 공항 및 항만을 통해 유입되는 해외 유입 확진자 를 대상으로 한 신속한 대응과 함께 변이바이러스의 특성 분 석을 위한 지속적인 정책 마련이 필요하다. 고 백신 효과를 감소시킬 수 있는 가능성이 있어 스파이크 단백질 내 변이를 확인하는 일이 중요하다[1]. WHO는 2021년 5월부터 변이 바이러스에 대한 공중보건 학적인 조치를 권장하기 위해, 전파력 또는 임상적 중증도가 증가하거나 백신, 치료제 등의 유효성 저하에 미치는 영향에 따라 주요 변이(variant of concern, VOC), 기타 변이(variant of interest, VOI)와 모니터링 변이(variant under monitorning, VUM)로 분류하여, 주기적인 업데이트를 통해 전세계 코로나19 변이 바이러스 모니터링에 힘써오고 있다. 그동안 지정된 VOC는 영국 유래 알파(Alpha, 2020년 9월)를 시작으로, 남아프리카공화국 유래 베타(Beta, 2020년 5월), 브라질 유래 감마(Gamma, 2020년 11월), 인도 유래 델타(Delta, 2020년 10월)가 있었고, 2021년 11월부터 남아프리카 공화국에서 출현하기 시작한 오미크론(Omicorn)이 지정된 후, 현재까지 오미크론에서 파생된 하위 및 재조합 변이를 계속 감시하고 있다(표 1) [2-4]. 2023년 4월 10일 기준, 오미크론 바이러스는 지속적인 변이 발생으로 총 1,160개의 하위 변이가 생성되어, BA.1 56 개, BA.2 320개, BA.3 2개, BA.4 27개, BA.5 513개와 재조합 변이 242개로 세분화 되었다[3,4]. 그 중에서 BA.5 세부계통 중 2020년 7월 나이지리아에서 처음 확인된 BQ.1 및 BQ.1.1와 2022년 6월 벨기에에서 처음 확인된 BF.7, BA.2 의 세부계통 변이 중의 하나인 BA.2.75 계열 BN.1, CH.1.1, CJ.1, 그리고 BA.4의 세부계통 중 하나로 2022년 4월 스페인 및 남아프리카공화국에서 첫 확인된 BA.4.6는 VUM로 분류되었고, 2022년 8월 인도에서 처음 확인된 재조합 변이 XBB 1.5 (i.e., BA.2 유래의 세부계통인 BJ.1과 BM.1.1.1의 재조합) 계열은 VOI로 감시되고 있다(WHO, 2023년 3월 15일 기준) (표 1) [2-4]. 질병관리청에서는 2020년 12월 영국에서 입국한 확진자 의 검체에서 알파 변이 바이러스를 처음 확인한 후, 국내외에 서 확산되고 있는 여러 다양한 코로나19 변이 바이러스를 감 시하기 위해, 유전자 감시사업(Genomic Surveillance)을 통 해 분석 역량을 지속적으로 확대하며 강화하고 있다. 그 일 환으로 전장유전체분석(Whole Genome Sequencing; Next Generation Sequencing), 스파이크 단백질만을 타깃으로 하는 부분유전자 분석(Sanger Sequencing)과 주요 변이 5종(알파, 베타, 감마, 델타 및 오미크론)에 대한 실시간 유전자 검출 검 사(real-time reverse transcription polymerase chain reaction, real-time RT-PCR)를 상황에 맞게 적용하여 변이분석을 하고 있으며, 실험을 통해 나온 유전적 결과 정보는 국내를 비롯해 서 국제인플루엔자정보공유기구(Global Initiative for Sharing All Influenza Data, GISAID)와 Phylogenetic Assignment of Named Global Outbreak Lineages을 통해 전세계적으로 공유 하며 코로나19 팬데믹에 대응하고 있다[5,6]. 이에 수도권질병대응센터도 2021년 2월부터 본격적으로 SARS-CoV-2 변이 감시 사업에 적극적으로 참여하여, 인천 공항 및 인천항을 통해 해외에서 유입되는 코로나19 변이 바이러스 분석 업무를 수행해 오고 있다[7-9]. 본 원고에서는 표 1 코로나19 변이 바이러스 | WHO 이름 | PANGO 계통 | 세부 계통 | 변이 출현 지역 및 날짜 | |--------|-----------|-----------|-----------------------| | 알파 | B.1.1.7 | | 영국, 2020년 9월 | | 베타 | B.1.351 | | 남아프리카, 2020년 5월 | | 감마 | P.1 | | 브라질, 2020년 11월 | | 델타 | B.1.617.2 | | 인도, 2020년 10월 | | 오미크론 | B.1.1.529 | | 보츠와나/남아프리카, 2021년 11월 | | | BA.1 | | 남아프리카, 2021년 11월 | | | BA.2 | | 남아프리카, 2021년 11월 | | | | BA.2.12.1 | 캐나다/미국, 2021년 12월 | | | | BA.2.75 | 인도, 2022년 6월 | | | | CJ.1 | 싱가포르, 2022년 9월 | | | | CH.1.1 | 인도, 2022년 7월 | | | | BN.1 | 여러 국가, 2022년 7월 | | | BA.4 | | 남아프리카, 2022년 1월 | | | | BA.4.6 | 남아프리카, 2022년 4월 | | | BA.5 | | 남아프리카, 2022년 1월 | | | | BF.7 | 여러 국가, 2022년 6월 | | | | BQ.1 | 나이지리아, 2022년 6월 | | | | BQ.1.1 | 나이지리아, 2022년 7월 | | 재조합변이 | XBB | | 인도, 2022년 8월 | | | XBB.1 | | 인도, 2022년 9월 | | | XBB.1.5 | | 미국, 2022년 10월 | | | XBB.1.9.1 | | 동남아시아, 2023년 1월 | WHO=World Health Organization; PANGO=Phylogenetic Assignment of Named Global Outbreak Lineages. Data from WHO [2], GISAID [3], and PANGO Lineages [4]. 2021년 2월 15일부터 2023년 3월까지 국립인천공항검역소 와 국립인천검역소 및 인천공항 내 민간검사센터인 제1, 2 여 객터미널에 위치한 이원의료재단, 명지병원 및 인하대병원에 의뢰되어 코로나19 감염이 확인된 해외입국자의 검체를 대상으로 수행된 총 13,098건의 SARS-CoV-2 변이 감시 결과를 정리하여 향후 해외유입 방역대책 및 확산 방지를 위한 대책수립을 위한 근거 자료를 마련하고자 한다. ## 방 법 #### 1. 분석 대상 수도권질병대응센터 진단분석과에서 2021년 2월 15일부터 2023년 3월까지 국립인천공항검역소와 국립인천검역소의 검역 단계에서 코로나19 유증상자로 분류되어 접수된 검체를 대상으로 수행된 진단 검사 52,602건 중 양성으로 판정된 7,538건의 검체와 2021년 12월 23일부터 2023년 3월까지주 1-2회에 걸쳐 인천공항 내 민간검사센터인 이원의료재단, 명지병원, 인하대병원에 의뢰하여 확진자로 분류된 해외입국자들의 양성 검체 9,308건을 수거하여 실험이 가능했던 (e.g., 유전자증폭횟수[Cycle threshold, {Ct}] 33 미만) 총 13,098건 양성 검체를 대상으로 SARS-CoV-2 변이형 분석을 수행하였다. 분석된 해외 유입 확진자 검체는 총 130개국에서 유래된 것으로 국내에서 확진된 해외입국자 71,048명 중 13,098명으로 18.8%에 해당되었으며, 국립인천공항검역소 7,305건(55.8%), 이원의료재단 2,770건(21.1%), 명지병원 2,331건(17.8%), 인하대병원 589건(4.5%), 국립인천검역소 103건 (0.8%) 순으로 나타났다(표 2). #### 2. SARS-CoV-2 변이형 분석 방법 SARS-CoV-2의 변이형을 분석하기 위해. 2021년 2월부 터 스파이크 단백질 유전자 부위(i.e., 약 4,000 염기서열, 4 kb) 서열 변화를 분석하기 위한 타깃유전자분석을 수행하였 고, 당해 연도 7월부터는 빠른 시간 내 주요 변이 유형 분석 이 가능한 real-time RT-PCR를 추가로 도입하여 병행하였다. 이후 2022년 2월부터는 SARS-CoV-2의 전체 염기서열(i.e., 약 30,000 염기서열, 30 kb) 분석을 위한 전장유전체분석을 수행하여 좀 더 정확한 세부 변이를 확인하였다. 각각의 실험 법은 코로나19 감염 진단을 위해 선행된 실시간 유전자 검출 검사의 표적 검출 유전자 중의 하나인 Open Reading Frames 1ab 또는 RNA-dependent RNA polymerase Ct값을 기준으로 선정되었으며, 주로 Ct값 25이하에서는 염기서열분석을 위한 타깃유전자 또는 전장유전체분석 실험을 수행하고 그 외 Ct 값 33미만에서는 real-time RT-PCR를 실시하였다. SARS-CoV-2 변이 분석 결과는 긴급 상황에 따라, 검체 채취 후 최 소 3일 이내에서 최대 2주 내 보고를 준수하며, 건강보험심사 평가원 내 보건의료위기대응시스템(Health Insurance Review & Assessment Service)에 보고하고, 분석된 모든 유전자 정보 는 GISAID에 등록하였다. #### 결 과 #### 1. 해외 유입 코로나19 확진자의 출발국 현황 해외 유입 코로나19 확진자의 출발국 순위는 해마다 차이를 보였다. 총 71개국에서 793명의 해외확진자 검체의 변이 분석을 수행했던 2021년에는 인도네시아가 222명(28.0%)으로 1위였으며, 미국 101명(12.7%), 우즈베키스탄 63명(7.9%), 인도 57명(7.2%), 러시아연방 45명(5.7%) 순으로 나타났다. 반면 2022년에는 총 126개국에서 11,381명의 해외유입 확진자 중 미국이 최다 출발국으로 1,942명(17.1%)이확인되었고, 베트남 1,029명(9.0%), 태국 944명(8.3%), 싱가포르 767명(6.7%)가 뒤를 이었다. 2023년 1월부터 3월까지분석된 해외 유입 확진자의 출발국은 총 53개국에서 924명이었고, 중국에서의 출발이 가장 많았고 전체 해외 유입 확진자의 37.3% (345명)을 차지하였다. 그 뒤로 일본 80명(8.7%), 미국 65명(7.0%), 태국 51명(5.5%) 순으로 나타났다(표 3). 감시 기간 동안 해외 유입 확진자의 최다 출발국으로서, 상위 15위를 차지했던 나라별 월별 통계를 보면, 미국이 월 별 통계에서도 대체로 최다 출발국으로 나타났다(그림 1). 하 지만, 2021년 델타 변이가 유입되기 시작했던 4월부터 5월에 는 전체 해외 유입 확진자 88명 중 인도에서 56명(63.5%)이 입국하였고, 6월과 7월에는 인도네시아에서 197명(60.1%) 이 최대 입국한 것으로 나타났다. 오미크론 변이 바이러스가 | 표 2 . 연도별 | 표 2. 연도별 해외 유입 코로나19 변이분석 양성 검체 현황 | | | | | | | | | |------------------|------------------------------------|-------------|--------------|--------------|-----------|----------------|-------------------|--|--| | | | 국내에서 확진된 | | | | | | | | | 연도 | 국립인천공항
검역소 | 국립인천
검역소 | 이원의료재단 | 명지병원 | 인하대병원 | 전체 | 코로나19
해외 유입 사례 | | | | 2021
(2-12월) | 750 (94.6) | 42 (5.3) | 1 (0.1) | _ | _ | 793 (6.1) | 11,570 (16.3) | | | | 2022 | 5,999 (52.7) | 61 (0.5) | 2,541 (22.3) | 2,220 (19.5) | 560 (4.9) | 11,381 (86.9) | 55,685 (78.4) | | | | 2023
(1-3월) | 556 (60.2) | - | 228 (24.7) | 111 (12.0) | 29 (3.1) | 924 (7.1) | 3,793 (5.3) | | | | 전체 | 7,305 (55.8) | 103 (0.8) | 2,770 (21.1) | 2,331 (17.8) | 589 (4.5) | 13,098 (100.0) | 71,048 (100.0) | | | | 해외유입 확진 | 해외유입 확진자 수(%). | | | | | | | | | | 순위 | 2021년(2-12월) | | 2022 | 2022년 | | 2023년(1-3월) | | |----|----------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|--| | 군위 | 국가 | 확진자 ^{a)} (%) | 국가 | 확진자 ^{a)} (%) | 국가 | 확진자 ^{a)} (%) | | | 1 | 인도네시아 | 222 (28.0) | 미국 | 1,942 (17.1) | 중국 | 345 (37.3) | | | 2 | 미국 | 101 (12.7) | 베트남 | 1029 (9.0) | 일본 | 80 (8.7) | | | 3 | 우즈베키스탄 | 63 (7.9) | 태국 | 944 (8.3) | 미국 | 65 (7.0) | | | 4 | 인도 | 57 (7.2) | 싱가포르 | 767 (6.7) | 태국 | 51 (5.5) | | | 5 | 러시아 | 45 (5.7) | 일본 | 560 (4.9) | 베트남 | 41 (4.4) | | | 6 | 튀르키예 | 41 (5.2) | 프랑스 | 517 (4.5) | 프랑스 | 37 (4.0) | | | 7 | 아랍에미리트 | 22 (2.8) | 독일 | 475 (4.2) | 스페인 | 30 (3.2) | | | 8 | 카자흐스탄 | 20 (2.5) | 필리핀 | 411 (3.6) | 독일 | 24 (2.6) | | | 9 | 미얀마 | 20 (2.5) | 튀르키예 | 341 (3.0) | 이탈리아 | 23 (2.5) | | | 10 | 필리핀 | 19 (2.4) | 이탈리아 | 319 (2.8) | 필리핀 | 19 (2.1) | | | 11 | 캄보디아 | 14 (1.8) | 인도 | 303 (2.7) | 영국 | 19 (2.1) | | | 12 | 파키스탄 | 13 (1.6) | 인도네시아 | 275 (2.4) | 튀르키예 | 16 (1.7) | | | 13 | 키르기스스탄 | 12 (1.5) | 영국 | 273 (2.4) | 오스트레일리아 | 15 (1.6) | | | 14 | 영국 | 10 (1.3) | 몽골 | 242 (2.1) | 싱가포르 | 15 (1.6) | | | 15 | 프랑스 | 8 (1.0) | 스페인 | 227 (2.0) | 대만 | 14 (1.5) | | | 16 | 폴란드 | 7 (0.9) | 말레이시아 | 226 (2.0) | 헝가리 | 13 (1.4) | | | 17 | 케냐 | 7 (0.9) | 캐나다 | 195 (1.7) | 오스트리아 | 12 (1.3) | | | 18 | 멕시코 | 6 (0.8) | 중국 | 163 (1.4) | 말레이시아 | 9 (1.0) | | | 19 | 몽골 | 6 (0.8) | 오스트레일리아 | 161 (1.4) | 인도네시아 | 8 (0.9) | | | 20 | 탄자니아 | 6 (0.8) | 스위스 | 135 (1.2) | 이스라엘 | 7 (0.8) | | | | 기타(51) ^{b)} | 94 (11.9) | 기타(106) ^{b)} | 1,876 (16.5) | 기타(33) ^{b)} | 81 (8.8) | | | 전체 | 793 (1 | | 11,381 (100.0) | | 924 (100.0) | | | 그림 1. 상위 15위 출발국의 월별 통계 및 코로나19 주요 변이 유입 시기 많이 유입되던 시기인 2022년 1월에는 해외 유입 확진자 총 651명 중 351명(53.9%)이 미국에서 입국하였다. 해외 유입 확진자가 가장 많았던 기간이자 오미크론 세부 변이 바이러스가 본격적으로 유입되기 시작한 2022년 7-9월에는 베트남, 태국, 싱가포르, 일본, 프랑스에서 입국자가 갑자기 증가된 것으로 나타났고, 같은 기간 전체 해외 유입 확진자의 34.8%(2,153명/6,181명)을 차지했다. 2022년 12월부터는 중국으로부터 해외 유입 확진자가 증가되면서 2023년 2월까지 각각 10.4%(110명/1,053명), 53.1%(274명/516명), 28.3%(60명/212명)에 해당되는 중국발 해외 유입 확진자가 확인되었다. #### 2. 해외 유입 SARS-CoV-2 변이 분석 코로나19 변이형 분석을 위해 수행된 3가지 실험법은 각각 실시간 유전자 검출검사(6,387건, 48.8%), 전장유전체분석(3,863건, 29.5%), 타깃유전자분석(2,848건 21.7%) 순으로 수행된 것으로 나타났다(그림 2A). 2021년 초반에는 타깃유전자분석이 주로 수행되다가, 당해 연도 7월 이후부터 델타및 오미크론 변이 바이러스의 유입으로 해외 유입 확진자가급증하던 시기인 2022년 9월까지 신속한 실험결과를 위해 실시간 유전자 검출검사가 높은 비율로 수행되었다. 이후, 2022년 10월부터는 오미크론 세부계통 변이 분석을 위한 전장유전체분석 실험이 비중있게 증가되었다. 감시 기간 동안 국내입국한 총 해외 유입 확진자 대비 변이 바이러스 월별 분석율을 보면(그림 2B), 가장 높은 비율로 변이 분석을 수행한 시 그림 2. SARS-CoV-2 월별 변이분석 실험 및 분석율 (A) 변이분석을 위한 실험 방법. (B) 국내 유입 해외 확진자 대비 변이분석율 기는 2022년 10월부터 12월에 해당하는 시기로 각각 42.9% (883명/2,057명), 54.2% (930명/1,717명), 49.3% (1,053 명/2,138명)로 나타났으며, 해외 유입 확진자가 가장 많았던 시기인 2021년 7월, 2022년 1월, 2022년 8월, 2023년 1월에는 각각 9.3% (192/2,074명), 7.9% (651명/8,224명), 15.4% (2,112명/13,742명), 19.3% (516명/2,671명)로 변이 분석을 수행한 것으로 나타났다. 전반적으로, 변이 분석을처음 시작했던 2021년에는 평균 6.9% (793명/11,570명)의분석율을 보였으나, 2022년 평균 20.4% (11,381명/55,685명), 2023년 1월부터 3월까지 평균 24.4% (924명/3,793명)으로 증가 추세를 보였다(표 2). 조사 감시 기간 동안 확인된 코로나19 주요 변이와 기타 변이는 2021년 2월을 시작으로 8월까지 알파 변이 분석이 55건(0.5%)로 나타났고, 같은 기간에 베타 5건, 입실론 4건, 감마 3건, 카파 3건, 이오타 3건, 에타 2건, 쎄타 1건 순으로 다양하게 나타났다. 하지만, 2021년 4월부터 델타 변이(658 건, 5.0%)가 유입되면서 다른 변이형 검출은 급속도로 감소되었고, 12월 초 오미크론 변이(i.e., BA.1과 BA.2)가 우세종으로 국내 유입되면서 델타 변이도 급격히 감소된 것으로 나타났다(그림 3). 2022년 중반 이후로는 WHO의 주요 변이로 지정되어 모니터링 되고 있는 오미크론 하위 계통 변이들의 유입이 본격적으로 시작된 것으로 나타났다. BA.5 계열의 급격한 유입이 6월부터 본격적으로 시작되어 9월부터 BA.5의 세부계통 변이인 BF.7 (144건), 10월부터 BQ.1 (101건)과 BQ.1.1 (239건)이 확인되었고, 7월부터 12월 초까지 BA.4 계열인 BA.4.6 13건이 유입된 것으로 나타났다. 비슷한 시기 8월부터는 BA.2.75 계열의 세부계통 변이가 확인되면서 BN.1 (77건), CH.1.1 (52건), CJ.1 (12건)이 각각 9월, 10월, 11월부터 유입된 것으로 나타났다. 오미크론의 다양한 재조합 변이들은 2022년 9월 이후부터 꾸준하게 유입되어 2023년 3월까지 총 357건이 분석되었고, 특히 XBB.1, XBB,1,5, XBB.1.9.1는 매월 증가 추세로 재조합 변이 분석건의 37% (132건/357건), 27.5% (98건), 8.1% (29건)을 차지하였다. WHO에서 지정해 왔던 주요 변이를 중심으로, 해외 유입 확진자의 출발국을 조사한 결과, 변이 유래 국가는 변이마다 다소 차이가 있는 것으로 나타났다(그림 4). 알파 변이의 경우 캄보디아(10건)에서 입국한 입국자들을 통해 가장 많이 유입되었고, 델타 변이는 인도네시아(222건), BA.2.75계열과 그세부계통 변이인 BN.1 (31건)과 CH.1.1 (9건), CJ.1 (5건)은 각각 베트남, 태국, 일본 등 아시아 국가에서 주로 유입되었던 것으로 나타났다. 반면, BA.4 및 BA.5 계열은 미국에서 가장 유입이 많았고, BA.5 세부계통인 BF.7 (46건)과 BQ.1.1 (36건)은 각각 중국과 프랑스에서 확진자 입국이 많았던 것으로 확인되었다. 재조합 변이인 경우, 인도네시아와 태국에서 가장 많이 유입된 것으로 나타났으며, 그 중 XBB.1.5 (39건)의 경우는 미국이 최대 출발국으로 나타났다. 그림 3. 인천공항 및 인천항을 통해 유 입된 코로나19 변이 월별 분포율 그림 4. 국내 유입된 코로나19 주요 변이의 상위 10위 출발국 분포 BA.2.75*는 BN.1,CH.1.1, CJ.1을 제외한 BA.2.75의 모든 세부 계통 변이 포함, BA.4*는 BA.4의 모든 세부 계통 변이 포함. BA.5*는 BF.7, BQ.1, BQ.1.1을 제외한 BA.5의 모든 세부 계통 변이 포함. Recombinant*는 XBB.1, XBB.1.9.1, XBB.1.5를 제외한 모든 재조합 변이를 포함. 가로 안의 수치는 해당 국가의 변이 검출 수를 나타냄 #### 논 의 2020년 2월부터 코로나19 팬데믹이 3년여간 지속되는 가운데, 2021년 2월 15일부터 수도권질병대응센터에서는 인천공항 및 인천항을 통해 입국한 코로나19 해외 유입 확진자를 대상으로 2023년 3월까지 전체 코로나19 해외 유입 확진자 18.8%에 해당되는 선제 변이 분석을 수행하였고, 그 결과 여러 다양한 VOC 및 VOI (i.e., 오미크론 12,364건, 델타658건, 알파55건, 베타5건, 입실론 4건, 감마3건, 카파3건, 이오타3건, 에타2건, 쎄타1건)을 조기에 탐지하여 보고함으로써 국내유입 차단을 위한 방역 및 공중보건학적인 조치에 일조하였다. 특히, 2022년 12월 이후부터 2월 중순까지 중국발 코로나19 집중 감시 기간에는 중국 변이 바이러스의 국내유입을 파악하고 차단하기 위해, 강화된 해외유입 변이 감시업무를 수행하며 적극적인 정보 공유를 통해, 국내변 이확산 우려에 적극적으로 대응하여 국내 공중보건 안정화에 기여할 수 있었다[9]. 오미크론 하위계통 내 변이 발생 및 유행은 예측이 어렵기 때문에, 해외 신규 변이 유입에 대한 실험실 감시가 강화되고 있다. 특히, 2023년 이후로 오미크론의 재조합 변이가 지속적으로 유입되면서, 전장유전체분석을 제외한 타깃유전자분석이나 real-time RT-PCR를 통한 변이형 확인이 어려워지고 있어, 분석 역량 확대 및 개선을 통한 감시체계 강화가 필요한 실정이다. 재조합 바이러스의 백신효과, 면역회피능 및 중증도 증가에 관한 임상 연구는 지속되고 있으나, XBB.1.5의 재조합 변이의 경우는 국내 우세화 가능성을 두고 면밀한 모니터링이 필요하다. 현재까지 XBB.1.5는 면역회피능력을 가지고 있지만 중증도 증가가 확인되지 않고 2가 백신이 여전히유효하여 크게 우려할 만한 변이는 아닌 것으로 판단되고 있지만[10]. XBB 계열의 세부계통 변이들이 계속 발생되고 있 어, 기존 주요 변이가 발생한 국가 및 신규 변이의 확산이 우려되는 국가를 중심으로 적극 모니터링할 예정이다. 인천공항과 인천항은 우리나라로 들어오는 해외 입국의 주요 관문으로써, 해외 유입 감염병의 감시 및 특성을 파악할 수 있는 중요한 거점이다. 따라서, 수도권질병대응센터에서는 해외 유입 감염병의 국내 전파를 효과적으로 차단하고 국내의 효율적인 방역 조치를 위해, 24시간 병원체 진단검사체계를 기반으로 코로나19 신규 변이의 유입 모니터링을 지속하고 변이분석결과는 적극적으로 대내외적으로 공유함으로써 국내외 공중보건 안정에 일조하고자 한다. #### **Declarations** Ethics Statement: Not applicable. Funding Source: The report was funded by Korea Disease Control and Prevention Agency (no. 6331-301). Acknowledgments: We thank the Division of Emerging Infection Diseases at KDCA for supporting experimental materials & methods and three testing centers (E-one Laboratories, MYONGJI Hospital, and Inha University Hospital) at Incheon International Airport for providing COVID-19 positive samples. **Conflict of Interest:** The authors have no conflicts of interest to declare. Author Contributions: Conceptualization: EJL. Data curation: EJL, SHH, SOJ. Formal analysis: EJL, SOJ, SHH, KSJ, IHK, JSN. Funding acquisition: EJK, JGN. Methodology: SHH, SMP, YJK, JHH, KRK, HSJ, KSJ, JSN, JAK, CYL. Investigation: EJL, SHH, SOJ, HJL. Project Administration: EJK. Supervision: JGN. Writing – original draft: EJL. Writing - review & editing: JGN, SOJ, IHK, KSJ. #### References - 1. Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 2020;41:1141-9. - 2. World Health Organization. Tracking SARS-CoV-2 variants [Internet]. World Health Organization; 2023 [cited 2023 Mar 15]. Available from: https://www.who.int/activities/tracking-SARS-CoV-2-variants - 3. GISAID. Global Initiative on Sharing Avian Influenza Data [Internet]. GISAID; 2023 [cited 2023 Apr 10]. Available from: https://gisaid.org/ - 4. PANGO Lineages [Internet]. Cov-lineages.org; 2023 [cited 2023 Apr 10]. Available from: https://cov-lineages.org - Kim IH, Park AK, Lee H, et al. July 2021 status and characteristics of the COVID-19 variant virus outbreak in the Republic of Korea. Public Health Wkly Rep 2021;14:2547-60. - Kim IH, Park AK, No JS, et al. Omicron subvariants (BQ.1, BQ.1.1, etc.) outbreak status. Public Health Wkly Rep 2022;15:2917-24. - 7. Jung SO, Kang K, Jang H, et al. A brief report of COV-ID-19 test results of overseas entrants to Republic of Korea as requested by two quarantine stations in 2021. Public Health Wkly Rep 2022;15:1453-9. - 8. Jung SO, Kang K, Jang H, et al. A brief report of CO-VID-19 test results of overseas entrants to Korea as requested by National Incheon Airport Quarantine Station in 2022. Public Health Wkly Rep 2023;16:381-93. - 9. Kim JA, Kim IH, No JS, et al. Surveillance and outbreak status of SARS-CoV-2 originated from China. Public Health Wkly Rep 2023;16:230-7. - World Health Organization. XBB.1.5 updated rapid risk assessment, 25 January 2023 [Internet]. World Health Organization; 2023 [cited 2023 Mar 15]. Available from: https://www.who.int/docs/default-source/coronaviruse/25 012023xbb.1.pdf?sfvrsn=c3956081_1 # Surveillance Report of Imported SARS-CoV-2 Variants at Incheon International Airport and Incheon Port (February 15, 2021-March 2023) Eun-Jung Lee¹, Sa-Hyum Hong¹, Sang Oun Jung¹, Sangmi Park¹, Young Jee Kim¹, Jihye Han¹, Karam Kang¹, Hanseul Jang¹, Kyu-Sik Jang¹, Il-Hwan Kim², Jin Sun No², HyeokJin Lee², Jeong-Ah Kim², Chae young Lee², Eun-Jin Kim², Jeonggu Nam¹* ¹Division of Laboratory Diagnosis Analysis, Capital Regional Center for Disease Control and Prevention, Korea Disease Control and Prevention Agency, Incheon, Korea ²Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongiu, Korea #### **ABSTRACT** The Division of Laboratory Diagnostic Analysis of the Capital Regional Center for Disease Control and Prevention conducted variant analysis on SARS-CoV-2-positive samples from the National Incheon Airport Quarantine Station, National Incheon Quarantine Station, and private diagnostic testing centers at Incheon International Airport from February 15, 2021, to March 2023. In total, 13,098 samples from COVID-19 cases from 130 countries were analyzed using the Genomic Surveillance project in the Republic of Korea. They included 12,364 cases (94.4%) of the Omicron family; 658 cases of Delta (5.0%); 55 cases of Alpha (0.4%); 5 cases of Beta; 4 cases of Epsilon; 3 cases each of Gamma, Kappa, and Iota; 2 cases of Eta; and 1 case of Theta SARS-CoV-2 variants. The countries with the highest number of imported cases were Indonesia in 2021 (222 cases, 28.0%), the United States in 2022 (1,942 cases, 17.1%), and China from January to March 2023 (345 cases, 37.3%). Most variants of concern in the Republic of Korea were introduced from various countries. As the importation of recombinant variants generated among sublineages of the Omicron variant increases in 2023, there is an increasing need for genomic analysis through whole-genome sequencing of SARS-CoV-2 variants to enable more accurate classification. Capital Regional Center for Disease Control and Prevention plans to continue to conduct SARS-CoV-2 variant analysis based on a 24-hour diagnostic testing system to effectively monitor the imported cases infectious diseases from abroad and take efficient domestic quarantine measures. Key words: COVID-19; SARS-CoV-2; Variant; Genomic Surveillance; Incheon Airport *Corresponding author: Jeonggu Nam, Tel: +82-32-740-2715, E-mail: jeonggu64@korea.kr #### Introduction coronavirus disease 2019 (COVID-19), which originated in Wuhan City, Hubei Province of China, in December 2019, a pandemic in March 2022. The disease has persisted for more World Health Organization (WHO) officially declared #### Key messages #### ① What is known previously? Since the onset of the COVID-19 pandemic in 2020, SARS-CoV-2 variants, including Alpha, Beta, Gamma, Delta, and the Omicron family, have been monitored through genomic surveillance projects. ② What new information is presented? In 2023, Omicron recombinant XBB has become more prominent. Whole-genome sequencing is required to monitor these recombinants for more accurate classification. #### 3 What are implications? To monitor new SARS-CoV-2 variants and block domestic transmission, it is necessary to respond rapidly to imported cases entering the country through airports and ports and to formulate policies to characterize variants on an ongoing basis. than 3 years, generating various variants and posing a threat to global public health. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is an RNA virus that constantly generates novel variants by repeating propagation and transmission processes. In particular, identifying variations in the spike protein (S protein) is crucial because receptor-binding domain variations in S protein can result in increased cell-virus binding and affect the ability of neutralizing antibodies to bind effectively to angiotensin-converting enzyme-2 receptors on the cell surface. This can lead to increased transmission power and severity and reduced vaccine effectiveness [1]. Since May 2021, the WHO has been tirelessly working on monitoring the global spread of SARS-CoV-2 variants through periodic updates. Based on the transmission power, clinical severity, and effectiveness of vaccines and therapeutics, variants have been classified as variant of concern (VOC), variant of interest (VOI), or variant under monitoring (VUM) to guide recommendations for public health measures against these variants. The first variant, designated the Alpha VOC originated in the United Kingdom (September 2020). This was followed by the Beta variant which originated in South Africa (May 2020), Gamma variant which originated in Brazil (November 2020), and Delta variant which originated in India (October 2020). Moreover, after the Omicron variant, which emerged in South Africa in November 2021, sub- and recombinant variants derived from Omicron are being continuously monitored (Table 1) [2-4]. As of April 10, 2023, the continuous occurrence of variants has resulted in a total of 1,160 Omicron subvariants. These have been subdivided into 56 BA.1, 320 BA.2, 2 BA.3, 27 BA.4, 513 BA.5, and 242 recombinant variants [3,4]. Among them, BQ.1 and BQ.1.1, which were first identified in Nigeria in July 2020, BF.7, first identified in Belgium in June 2022, BN.1, among the sublineages of BA.5, CH.1.1, and CJ.1 of the BA.2.75 family, one of the sublineage variants of BA.2, and BA.4.6, one of the BA.4 sublineages, first identified in Spain and South Africa in April 2022, were classified as VUM, and the XBB 1.5 family, a recombinant variant (i.e., recombination of BJ.1 and BM.1.1.1, the sublineages from BA.2), which was first identified in India in August 2022, is being monitored as a VOI (WHO, March 15, 2023) (Table 1) [2-4]. After confirmation of the Alpha variant in a sample of patients who arrived in the Republic of Korea (ROK) from the United Kingdom in December 2020 by the Korea Disease Control and Prevention Agency (KDCA), the KDCA has continued to expand and strengthen its analysis capabilities through genomic surveillance to monitor the spread of various | WHO Name | PANGO lineage | sub-lineage | Emergence Location/Date | |-------------|---------------|-------------|------------------------------------| | Alpha | B.1.1.7 | | United Kingdom, Sep 2020 | | Beta | B.1.351 | | Southern Africa, May 2020 | | Gamma | P.1 | | Brazil, Nov 2020 | | Delta | B.1.617.2 | | India, Oct 2020 | | Omicron | B.1.1.529 | | Botswana/Southern Africa, Nov 2021 | | | BA.1 | | Southern Africa, Nov 2021 | | | BA.2 | | Southern Africa, Nov 2021 | | | | BA.2.12.1 | Canada/USA, Dec 2021 | | | | BA.2.75 | India, Jun 2022 | | | | CJ.1 | Singapore, Sep 2022 | | | | CH.1.1 | India, July 2022 | | | | BN.1 | Multiple, July 2022 | | | BA.4 | | Southern Africa, Jan 2022 | | | | BA.4.6 | Southern Africa, Apr 2022 | | | BA.5 | | Southern Africa, Jan 2022 | | | | BF.7 | Multiple, Jun 2022 | | | | BQ.1 | Nigeria, Jul 2022 | | | | BQ.1.1 | Nigeria, Jul 2022 | | Recombinant | XBB | | India, Aug 2022 | | | XBB.1 | | India, Sep 2022 | | | XBB.1.5 | | USA, Oct 2022 | | | XBB.1.9.1 | | Southeast Asia, Jan 2023 | COVID-19=coronavirus disease 2019; WHO=World Health Organization; PANGO=Phylogenetic Assignment of Named Global Outbreak Lineages; USA=United States of America. Data from WHO [2], GISAID [3], and PANGO Lineages [4]. SARS-CoV-2 variants in the ROK as well as other countries. Thus, variant analysis is performed by applying whole-genome sequencing (next-generation sequencing), Sanger sequencing, a partial gene analysis targeting only S protein, and real-time reverse transcription polymerase chain reaction (RT-PCR) for five types of VOCs (Alpha, Beta, Gamma, Delta, and Omicron) depending on the situation, and genetic results are shared in the ROK and worldwide through the Global Initiative for Sharing All Influenza Data (GISAID) and Phylogenetic Assignment of Named Global Outbreak Lineages in response to the COVID-19 pandemic [5,6]. Since February 2021, the Capital Regional Center for Disease Control and Prevention has actively participated in the surveillance project for SARS-CoV-2 variants by analyzing variants introduced from other countries via the Incheon International Airport and Incheon Port [7-9]. This study aims to provide evidence for establishing effective quarantine measures for those arriving from overseas and preventing the spread of COVID-19 in the future by reporting the surveillance results of the SARS-CoV-2 variants. A total of 13,098 cases of confirmed COVID-19 infection were analyzed through collaboration with the Incheon Airport National Quarantine Station and Incheon National Quarantine Station and private inspection centers at Incheon International Airport, Eone Laboratories, Myongji Hospital, and Inha University Hospital, located at passenger terminals 1 and 2 between February 15, 2021 and March 2023. #### Methods #### 1. Participants From February 15, 2021 to March 2023, a total of 52,602 diagnostic tests were performed on samples classified as symptomatic and received at the Incheon Airport National Quarantine Station and Incheon National Quarantine Station. Of these, a total of 7,538 samples were confirmed positive by the Division of Laboratory Diagnosis Analysis of the Capital Regional Center for Disease Control and Prevention. Between December 23, 2021 and March 2023, a total of 9,308 samples from those arriving from overseas classified as confirmed cases were collected one to two times a week through requests made to Eone Laboratories, Myongji Hospital, and Inha University Hospital, private inspection centers in Incheon International Airport. COVID-19 variant analysis was performed on a total of 13,098 positive samples (cycle threshold [Ct] less than 33). The samples from overseas entrants were from a total of 130 countries, 13,098 cases (18.8%) out of 71,048 overseas entrants in the ROK (Incheon Airport National Quarantine Station, 7,305 [55.8%], Eone Laboratories, 2,770 [21.1%], Myongji Hospital, 2,331 [17.8%], Inha University Hospital, 589 [4.5%], and Incheon National Quarantine Station, 103 [0.8%]) (Table 2). #### 2. Analysis Methods for SARS-CoV-2 Variants Targeted gene analysis was performed in February 2021 to analyze sequencing changes in S protein gene sites (i.e., approximately 4,000 sequences, 4 kb). In July 2021, additional real-time RT-PCR capable of VOC analysis in a short period was introduced and conducted in parallel. Subsequently, in February 2022, more accurate analysis of subvariants was performed using whole-genome sequencing to analyze the entire sequence of SARS-CoV-2 (i.e., approximately 30,000 sequences, 30 kb). Each experimental method was selected based on the Ct value of open reading frames 1ab (ORFlab) or RNAdependent RNA polymerase (RdRp), one of the target detection genes of real-time RT-PCR for the diagnosis of COVID-19 infection. Targeted gene analysis or whole-genome sequencing was mainly used at a Ct of 25 or less, and real-time RT-PCR was performed at a Ct of less than 33. The analysis results for SARS-CoV-2 variants were reported within a minimum of 3 | | The number of imported COVID-19 confirmed cases at Incheon International Airport and Incheon Port | | | | | | | | |-------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------|---------------------|--------------------------------|----------------|------------------------------------------------------------|--| | Year | National Incheon
Airport
Quarantine
Station | National
Incheon
Quarantine
Station | E-one
Laboratories | Myongji
Hospital | Inha
University
Hospital | Total | COVID-19
confirmed cases
in the Republic
of Korea | | | 2021
(Feb-Dec) | 750 (94.6) | 42 (5.3) | 1 (0.1) | - | _ | 793 (6.1) | 11,570 (16.3) | | | 2022 | 5,999 (52.7) | 61 (0.5) | 2,541 (22.3) | 2.220 (19.5) | 560 (4.9) | 11.381 (86.9) | 55,685 (78.4) | | | 2023
(Jan-Mar) | 556 (60.2) | - | 228 (24.7) | 111 (12.0) | 29 (3.1) | 924 (7.1) | 3,793 (5.3) | | | Total | 7,305 (55.8) | 103 (0.8) | 2,770 (21.1) | 2,331 (17.8) | 589 (4.5) | 13,098 (100.0) | 71,048 (100.0) | | days and a maximum of 2 weeks after sample collection, depending on the state of emergency. In addition, the analysis results were reported to the Healthcare Crisis Response System of Health Insurance Review and Assessment, and all analyzed genetic information was registered into GISAID. ### Results # Status of the Country of Departure of COVID-19-confirmed Cases from Overseas The rankings of the country of departure of the COVID-19-confirmed cases from overseas varied each year. In 2021, when 793 samples from confirmed patients from 71 countries were analyzed, Indonesia ranked first among the countries of departure with 222 cases (28.0%), followed by the United States with 101 (12.7%), Uzbekistan with 63 (7.9%), India with 57 (7.2%), and the Russian Federation with 45 (5.7%). In 2022, of 11,381 confirmed patients from 126 countries, the highest number was from the United States, 1,942 (17.1%), followed by Vietnam with 1,029 (9.0%), Thailand with 944 (8.3%), and Singapore with 767 (6.7%). From January to March 2023, there were 924 confirmed cases from 53 countries, and China accounted for 37.3% (345) of the total number of confirmed cases from abroad. China was followed by Japan with 80 (8.7%), the United States with 65 (7.0%), and Thailand with 51 (5.5%) (Table 3). On analyzing the monthly statistics of each country that ranked in the top 15 as the country of departure with the highest number of confirmed cases during the surveillance period, the United States was usually the country of departure with the highest number of cases (Figure 1). However, in April and May 2021, with an inflow of Delta variant cases, of a total of 88 imported confirmed cases, 56 (63.5%) entered the ROK from India and 197 (60.1%) entered the ROK from Indonesia in June and July. In January 2022, when many Omicron variants were introduced, of 651 imported confirmed cases, 351 (53.9%) entered the ROK from the United States. In July, August, and September 2022, with the significant influx of imported confirmed cases in the ROK and the emergence of Omicron subvariants, cases from Vietnam, Thailand, Singapore, Japan, and France showed sudden increase, accounting for 34.8% (2,153/6,181) of the total number of imported confirmed cases during the same period. In December 2022, the number of imported confirmed cases from China increased, and by February 2023, 10.4% (110 /1053), 53.1% (274 /516), and 28.3% (60 /212) of imported confirmed cases from China were identified. # Overseas Imported SARS-CoV-2 Variant Analysis SARS-CoV-2 variants were analyzed using real-time RT-PCR (6,387, 48.8%), whole-genome sequencing (3,863, 29.5%), and targeted gene analysis (2,848, 21.7%) (Figure 2A). In early 2021, targeted gene analysis was mainly performed; however, from July 2021 to September 2022, when the number of imported confirmed cases surged because of the Delta and Omicron variants, real-time RT-PCR was performed at a high rate to obtain rapid test results. Since October 2022, there has been a substantial increase in whole-genome sequencing experiments aimed at analyzing Omicron subvariants. On exploring the monthly analysis rate of the variants compared with the total number of imported confirmed cases entering the ROK during the monitoring period (Figure 2B), it was observed that the period with the highest analysis | Donk | 2021 (Fe | b-Dec) | 202 | 22 | 2023 (Jan-Mar) | | |-------|---------------------------|---------------------|----------------------------|---------------------|---------------------------|---------------------| | Rank | Country | n ^{a)} (%) | Country | n ^{a)} (%) | Country | n ^{a)} (%) | | 1 | Indonesia | 222 (28.0) | USA | 1,942 (17.1) | China | 345 (37.3) | | 2 | USA | 101 (12.7) | Vietnam | 1029 (9.0) | Japan | 80 (8.7) | | 3 | Uzbekistan | 63 (7.9) | Thailand | 944 (8.3) | USA | 65 (7.0) | | 4 | India | 57 (7.2) | Singapore | 767 (6.7) | Thailand | 51 (5.5) | | 5 | Russia | 45 (5.7) | Japan | 560 (4.9) | Vietnam | 41 (4.4) | | 6 | Türkiye | 41 (5.2) | France | 517 (4.5) | France | 37 (4.0) | | 7 | UAE | 22 (2.8) | Germany | 475 (4.2) | Spain | 30 (3.2) | | 8 | Kazakhstan | 20 (2.5) | Philippines | 411 (3.6) | Germany | 24 (2.6) | | 9 | Myanmar | 20 (2.5) | Türkiye | 341 (3.0) | Italy | 23 (2.5) | | 10 | Philippines | 19 (2.4) | Italy | 319 (2.8) | Philippines | 19 (2.1) | | 11 | Cambodia | 14 (1.8) | India | 303 (2.7) | UK | 19 (2.1) | | 12 | Pakistan | 13 (1.6) | Indonesia | 275 (2.4) | Türkiye | 16 (1.7) | | 13 | Kyrgyzstan | 12 (1.5) | UK | 273 (2.4) | Australia | 15 (1.6) | | 14 | UK | 10 (1.3) | Mongolia | 242 (2.1) | Singapore | 15 (1.6) | | 15 | France | 8 (1.0) | Spain | 227 (2.0) | Taiwan | 14 (1.5) | | 16 | Poland | 7 (0.9) | Malaysia | 226 (2.0) | Hungary | 13 (1.4) | | 17 | Kenya | 7 (0.9) | Canada | 195 (1.7) | Austria | 12 (1.3) | | 18 | Mexico | 6 (0.8) | China | 163 (1.4) | Malaysia | 9 (1.0) | | 19 | Mongolia | 6 (0.8) | Australia | 161 (1.4) | Indonesia | 8 (0.9) | | 20 | Tanzania | 6 (0.8) | Swiss | 135 (1.2) | Israel | 7 (0.8) | | | Others (51) ^{b)} | 94 (11.9) | Others (106) ^{b)} | 1,876 (16.5) | Others (33) ^{b)} | 81 (8.8) | | Total | 793 (10 | (0.00 | 11,381 (| 100.0) | 924 (10 | 00.0) | COVID-19=coronavirus disease 2019; USA=United States of America; UAE=United Arab Emirates. ^{a)}The number of overseas entrants infected with COVID-19. ^{b)}The number of other countries except for top 20 countries. **Figure 1.** Monthly statistics of the top 15 departure countries and the imported period of VOC UK=United Kingdom; USA=United States of America; VOC=variant of concern. Figure 2. Monthly experiment for SARS-CoV-2 variants analysis and its rate (A) Experimental methods to analyze variants. (B) The rate of variant analysis to the total of overseas entrants infected with COVID-19. SARS-CoV-2=severe acute respiratory syndrome coronavirus 2; NGS=next generation sequencing: RT-PCR=real-time reverse transcription polymerase chain reaction. percentages was from October to December 2022, with 42.9% (883/2,057), 54.2% (930/1,717), and 49.3% (1,053/2,138), respectively. In July 2021, January 2022, August 2022, and January 2023, when the number of imported confirmed cases was the highest, the variant analysis percentages were 9.3% (192/2,074), 7.9% (651/8,224), 15.4% (2,112/13,742), and 19.3% (516/2,671), respectively. Overall, the average analysis rate was 6.9% (793/11,570) in 2021, when variant analysis was first started; however, the average for 2022 was 20.4% (11,381/55,685) and for January to March 2023 was 24.4% (924/3,793), showing an increasing trend (Table 2). On examining the VOCs and VOIs during the investigation monitoring period from February to August 2021, 55 cases (0.5%) of Alpha variant analysis were identified, followed by five of Beta, four of Upsilon, three of Gamma, three of Kappa, three of Iota, two of Eta, and one of Theta during the same period. However, from April 2021, the detection of other variants decreased rapidly due to the introduction of the Delta variant (658 cases, 5.0%), and detection of the Delta variant also decreased rapidly due to the introduction of the Omicron variants (i.e., BA.1 and BA.2) in the ROK as a dominant species in early December (Figure 3). From the middle of 2022, Figure 3. Percentages of imported SARS-CoV-2 variants distribution from abroad through Incheon International Airport and Incheon Port by month SARS-CoV-2=severe acute respiratory syndrome coronavirus 2. the introduction of variants monitored among sublineage variants of Omicron designated as VOC by the WHO began. The rapid introduction of the BA.5 family began in June, with subsequent confirmation of sublineage variants such as BF.7 (144 cases) in September and BQ.1 (101 cases) and BQ.1.1 (239 cases) in October. In addition, 13 cases of BA.4.6, which is a sublineage variant of the BA.4 family, were identified from July to early December. Around the same time, in August, sublineage variants of the BA.2.75 family were confirmed, including BN.1 (77 cases), CH.1.1 (52 cases), and CJ.1 (12 cases) in September, October, and November, respectively. Various recombinant variants of Omicron have been steadily introduced since September 2022, and a total of 357 cases have been analyzed by March 2023. In particular, XBB.1, XBB.1.5, and XBB.1.9.1 accounted for 37% (132/357), 27.5% (98), and 8.1% (29) of the recombinant variant cases analyzed, showing a monthly increase. On examining the country of departure of confirmed cases imported from abroad, focusing on VOCs designated by the WHO, slight differences were observed depending on the variants (Figure 4). The Alpha variant was primarily introduced through entrants from Cambodia (10 cases), the Delta variant from Indonesia (222 cases), and the BA.2.75 family and its sublineage variants, BN.1 (31 cases), CH.1.1 (9 cases), and CJ.1 (5 cases), from Asian countries, such as Vietnam, Thailand, and Japan, respectively. The BA.4 and BA.5 families were mainly introduced from the United States, and BF.7 (46 cases) and BQ.1.1 (36 cases), sublineages of BA.5, were introduced from China and France, respectively. Recombinant variants were introduced primarily from Indonesia and Thailand, with the United States being the main country of departure for XBB.1.5 (39 cases). #### Discussion While the COVID-19 pandemic persisted for 3 years from February 2020, since February 15, 2021, the Capital Regional Center for Disease Control and Prevention has conducted preemptive variant analysis. Until March 2023, the Capital Regional Center for Disease Control and Prevention has analyzed 18.8% of the total number of confirmed COVID-19 cases imported from overseas via Incheon International Airport and Incheon Port. As a result, the center has contributed to quarantine and public health measures by restricting the inflow **Figure 4.** Percentage of the top 10 departure country distribution, according to main SARS-CoV-2 variants imported to the Republic of Korea BA.2.75* includes all sub-lineages of BA.2.75, except for BN.1., CH.1.1, and CJ.1; BA.4* includes all sub-lineages of BA.4; BA.5* includes all sub-lineages of BA.5, except for BF.7, BQ.1, and BQ.1.1; Recombinant* includes all kinds of variants recombined among Omicron sub-lineages, except for XBB.1, XBB.1.9.1, and XBB.1.5; The number in parentheses means the number of variants in the country. UK=United Kingdom; USA=United States of America; SARS-CoV-2=severe acute respiratory syndrome coronavirus 2. of variants into the ROK by detecting and reporting various VOCs and VOIs early on (i.e., 12,364 cases of Omicron, 658 cases of Delta, 55 cases of Alpha, 5 cases of Beta, 4 cases of Upsilon, 3 cases of Gamma, 3 cases of Kappa, 3 cases of Iota, 2 cases of Eta, and 1 case of Theta). In particular, during the intensive monitoring period for COVID-19 cases originating from China, from December 2022 to mid-February, enhanced overseas inflow variant surveillance was performed to identify and block the introduction of variants from China into the ROK, and efforts were made to stabilize public health in the ROK and respond to concerns regarding the spread of variants in the ROK by sharing information proactively [9]. As predicting the occurrence and prevalence of variants within the Omicron sublineages is challenging, laboratory surveillance against the introduction of overseas novel variants is being strengthened. In particular, as recombinant variants of Omicron are being continuously introduced since 2023, confirming variants with targeted gene analysis or real-time RT-PCR is becoming challenging. However, whole-genome sequencing is still essential for variant identification. Hence, the monitoring system needs to be strengthened by expanding and improving analysis capabilities. Although clinical studies on vaccine effectiveness for recombinant viruses, immune evasion, and increased severity, are ongoing, recombinant variants of XBB.1.5 require close monitoring considering their potential to become dominant in the ROK. Thus far, even though XBB.1.5 has immune evasion, XBB.1.5 is not considered a variant of significant concern because no increase in severity has been identified, and the bivalent vaccine is still effective [10]. However, as sublineage variants of the XBB family have continuously occurred, we plan to actively monitor countries where existing VOCs have occurred and countries where concern exists regarding the spread of novel variants. Incheon International Airport and Incheon Port are the main gateways to enter the ROK and are essential bases for monitoring and identifying the characteristics of infectious diseases imported from abroad. Therefore, the Capital Regional Center for Disease Control and Prevention continues to monitor the introduction of novel SARS-CoV-2 variants through enhanced variant surveillance based on the 24-hour pathogen diagnostic testing system to effectively block the inflow of foreign infectious diseases into the ROK and undertake effective quarantine measures. The center actively shares variant analysis results internally and externally to contribute to quarantine and international cooperation in the ROK. #### **Declarations** Ethics Statement: Not applicable. Funding Source: The report was funded by Korea Disease Control and Prevention Agency (no. 6331-301). Acknowledgments: We thank the Division of Emerging Infection Diseases at KDCA for supporting experimental materials & methods and three testing centers (E-one Laboratories, MYONGJI Hospital, and Inha University Hospital) at Incheon International Airport for providing COVID-19 positive samples. Conflict of Interest: The authors have no conflicts of interest to declare. Author Contributions: Conceptualization: EJL. Data curation: EJL, SHH, SOJ. Formal analysis: EJL, SOJ, SHH, KSJ, IHK, JSN. Funding acquisition: EJK, JGN. Methodology: SHH, SMP, YJK, JHH, KRK, HSJ, KSJ, JSN, JAK, CYL. Investigation: EJL, SHH, SOJ, HJL. Project Administration: EJK. Supervision: JGN. Writing – original draft: EJL. Writing – review & editing: JGN, SOJ, IHK, KSJ. #### References - Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 2020;41:1141-9. - World Health Organization. Tracking SARS-CoV-2 variants [Internet]. World Health Organization; 2023 [cited 2023 Mar 15]. Available from: https://www.who.int/activities/tracking-SARS-CoV-2-variants - 3. GISAID. Global Initiative on Sharing Avian Influenza Data [Internet]. GISAID; 2023 [cited 2023 Apr 10]. Available from: https://gisaid.org/ - 4. PANGO Lineages [Internet]. Cov-lineages.org; 2023 [cited 2023 Apr 10]. Available from: https://cov-lineages.org - Kim IH, Park AK, Lee H, et al. July 2021 status and characteristics of the COVID-19 variant virus outbreak in the Republic of Korea. Public Health Wkly Rep 2021;14:2547-60. - Kim IH, Park AK, No JS, et al. Omicron subvariants (BQ.1, BQ.1.1, etc.) outbreak status. Public Health Wkly Rep 2022;15:2917-24. - 7. Jung SO, Kang K, Jang H, et al. A brief report of COV-ID-19 test results of overseas entrants to Republic of Korea as requested by two quarantine stations in 2021. Public Health Wkly Rep 2022;15:1453-9. - 8. Jung SO, Kang K, Jang H, et al. A brief report of CO-VID-19 test results of overseas entrants to Korea as requested by National Incheon Airport Quarantine Station in 2022. Public Health Wkly Rep 2023;16:381-93. - 9. Kim JA, Kim IH, No JS, et al. Surveillance and outbreak - status of SARS-CoV-2 originated from China. Public Health Wkly Rep 2023;16:230-7. - 10. World Health Organization. XBB.1.5 updated rapid risk assessment, 25 January 2023 [Internet]. World Health Organization; 2023 [cited 2023 Mar 15]. Available from: https://www.who.int/docs/default-source/coronaviruse/25 012023xbb.1.pdf?sfvrsn=c3956081_1